Tropical Combinatorial Nullstellensatz and Fewnomials Testing

Dima Grigoriev ${ }^{1}$ Vladimir V. Podolskii ${ }^{2}$

${ }^{1}$ CNRS/MPIM, Lille
Humboldt-Stiftung
${ }^{2}$ Steklov Mathematical Institute, Moscow
Higher School of Economics, Moscow

Max-plus Semiring

Max-plus semiring (tropical semiring):

$$
(K, \oplus, \odot),
$$

where $K=\mathbb{R}$ or $K=\mathbb{Q}$ and

$$
\begin{gathered}
x \oplus y=\max \{x, y\}, \\
x \odot y=x+y
\end{gathered}
$$

Tropical Polynomials

Monomials:

$$
M=c \odot x_{1}^{\odot i_{1}} \odot \ldots \odot x_{n}^{\odot i_{n}}=c+i_{1} x_{1}+\ldots+i_{n} x_{n}
$$

where $c \in \mathbb{K}$ and $i_{1}, \ldots, i_{n} \in \mathbb{Z}_{+}$
Notation: $\vec{x}^{\prime}=x_{1}^{\odot i_{1}} \odot \ldots \odot x_{n}^{\odot i_{n}}$
Polynomials:

$$
f=\bigoplus_{i} M_{i}=\max _{i} M_{i}
$$

Degree:
$\operatorname{deg} M=i_{1}+\ldots+i_{n}$, $\operatorname{deg} f=\max _{i} \operatorname{deg}\left(M_{i}\right)$

Roots

Monomials:

$$
M=c \odot x_{1}^{\odot i_{1}} \odot \ldots \odot x_{n}^{\odot i_{n}}=c+i_{1} x_{1}+\ldots+i_{n} x_{n}
$$

Polynomials:
$f=\bigoplus_{i} M_{i}=\max _{i} M_{i}$
A point $\vec{a} \in \mathbb{K}^{n}$ is a root of the polynomial f if the maximum $\max _{i}\left\{M_{i}(\vec{a})\right\}$ is either attained on at least two different monomials M_{i} or is infinite

A tropical polynomial $p(\vec{x})$ is a convex piece-wise linear function
The roots of p are non-smoothness points of this function

Example 1

$f=1 \oplus 2 \odot x \oplus 0 \odot x^{\odot} 2=\max (1, x+2,2 x)$

Example 1

$f=1 \oplus 2 \odot x \oplus 0 \odot x^{\odot} 2=\max (1, x+2,2 x)$
Roots: $x=-1, x=2$

Example 1

$f=1 \oplus 2 \odot x \oplus 0 \odot x^{\odot} 2=\max (1, x+2,2 x)$
Roots: $x=-1, x=2$

Example 2

$$
f=2 \oplus 0 \odot x \oplus 1 \odot y=\max (2, x, y+1)
$$

Example 2

$$
f=2 \oplus 0 \odot x \oplus 1 \odot y=\max (2, x, y+1)
$$

Roots:

Motivation

- Algebraic geometry. Example: Mikhalkin's theorem on the enumeration of plane complex algebraic curves
- Mathematical physics
- Combinatorial optimization, scheduling problems
- Complexity theory: solvability problem for the systems of tropical linear polynomials is equivalent to mean payoff games

Motivation

- Algebraic geometry. Example: Mikhalkin's theorem on the enumeration of plane complex algebraic curves
- Mathematical physics
- Combinatorial optimization, scheduling problems
- Complexity theory: solvability problem for the systems of tropical linear polynomials is equivalent to mean payoff games

Why useful?

Motivation

- Algebraic geometry. Example: Mikhalkin's theorem on the enumeration of plane complex algebraic curves
- Mathematical physics
- Combinatorial optimization, scheduling problems
- Complexity theory: solvability problem for the systems of tropical linear polynomials is equivalent to mean payoff games

Why useful?
Tropical analogs of classical objects are

- complex enough to reflect properties of classical objects;

Motivation

- Algebraic geometry. Example: Mikhalkin's theorem on the enumeration of plane complex algebraic curves
- Mathematical physics
- Combinatorial optimization, scheduling problems
- Complexity theory: solvability problem for the systems of tropical linear polynomials is equivalent to mean payoff games

Why useful?
Tropical analogs of classical objects are

- complex enough to reflect properties of classical objects;
- simple enough to be computationally accessible

What is Known?

Linear polynomials:
Analogs of the rank of matricies
Analog of matrix determinant
Analog of Gauss triangular form
Complexity of solvability problem: polynomially equivalent to mean payoff games (is in NP \cap coNP, not known to be in P)

General polynomials:
Radical of the tropical ideal studied
Analog of Nullstellensatz
Complexity of solvability problem: NP-complete

This Talk

Roots of tropical polynomials are not well understood

This Talk

Roots of tropical polynomials are not well understood
Support $\operatorname{Supp}(p)$ of a polynomial p is the set of all $J=\left(j_{1}, \ldots, j_{n}\right)$ such that p has a monomial \vec{x}^{J} (with some coefficient).

This Talk

Roots of tropical polynomials are not well understood
Support $\operatorname{Supp}(p)$ of a polynomial p is the set of all $J=\left(j_{1}, \ldots, j_{n}\right)$ such that p has a monomial \vec{x}^{J} (with some coefficient).

Three questions:

1. Given finite sets $R \subseteq \mathbb{R}^{n}$ and $S \subseteq \mathbb{Z}_{+}^{n}$, is there a tropical polynomial p with $\operatorname{Supp}(p) \subseteq S$ and roots in all points of R ?

This Talk

Roots of tropical polynomials are not well understood
Support $\operatorname{Supp}(p)$ of a polynomial p is the set of all $J=\left(j_{1}, \ldots, j_{n}\right)$ such that p has a monomial \vec{x}^{J} (with some coefficient).

Three questions:

1. Given finite sets $R \subseteq \mathbb{R}^{n}$ and $S \subseteq \mathbb{Z}_{+}^{n}$, is there a tropical polynomial p with $\operatorname{Supp}(p) \subseteq S$ and roots in all points of R ?
2. Given finite sets $R \subseteq \mathbb{R}^{n}$ and $S \subseteq \mathbb{Z}_{+}^{n}$, how many roots can a tropical polynomial p with $\operatorname{Supp}(p) \subseteq S$ have in the set R ?

This Talk

Roots of tropical polynomials are not well understood
Support $\operatorname{Supp}(p)$ of a polynomial p is the set of all $J=\left(j_{1}, \ldots, j_{n}\right)$ such that p has a monomial \vec{x}^{J} (with some coefficient).

Three questions:

1. Given finite sets $R \subseteq \mathbb{R}^{n}$ and $S \subseteq \mathbb{Z}_{+}^{n}$, is there a tropical polynomial p with $\operatorname{Supp}(p) \subseteq S$ and roots in all points of R ?
2. Given finite sets $R \subseteq \mathbb{R}^{n}$ and $S \subseteq \mathbb{Z}_{+}^{n}$, how many roots can a tropical polynomial p with $\operatorname{Supp}(p) \subseteq S$ have in the set R ?
3. What is the size of the minimal set of points $R \subseteq \mathbb{K}^{n}$ such that any non-trivial polynomial with at most k monomials has a non-root in one of the points of R ?

Combinatorial Nulstellensatz

Question 1 Given finite sets $R \subseteq \mathbb{R}^{n}$ and $S \subseteq \mathbb{Z}_{+}^{n}$, is there a tropical polynomial p with $\operatorname{Supp}(p) \subseteq S$ and roots in all points of R ?

Denote $[k]=\{0,1 \ldots, k\}$

Combinatorial Nulstellensatz

Question 1 Given finite sets $R \subseteq \mathbb{R}^{n}$ and $S \subseteq \mathbb{Z}_{+}^{n}$, is there a tropical polynomial p with $\operatorname{Supp}(p) \subseteq S$ and roots in all points of R ?

Denote $[k]=\{0,1 \ldots, k\}$
Lemma (Classical, well known)
A non-zero polynomial p of n variables and individual degree d has a non-root in [d] ${ }^{n}$

Combinatorial Nulstellensatz

Question 1 Given finite sets $R \subseteq \mathbb{R}^{n}$ and $S \subseteq \mathbb{Z}_{+}^{n}$, is there a tropical polynomial p with $\operatorname{Supp}(p) \subseteq S$ and roots in all points of R ?

Denote $[k]=\{0,1 \ldots, k\}$
Lemma (Classical, well known)
A non-zero polynomial p of n variables and individual degree d has a non-root in [d] ${ }^{n}$

Theorem (Tropical)
A non-zero tropical polynomial p of n variables and individual degree d has a non-root in [d] ${ }^{n}$

Combinatorial Nulstellensatz

Question 1 Given finite sets $R \subseteq \mathbb{R}^{n}$ and $S \subseteq \mathbb{Z}_{+}^{n}$, is there a tropical polynomial p with $\operatorname{Supp}(p) \subseteq S$ and roots in all points of R ?

Denote $[k]=\{0,1 \ldots, k\}$
Lemma (Classical, well known)
A non-zero polynomial p of n variables and individual degree d has a non-root in [d] ${ }^{n}$

Theorem (Tropical)
A non-zero tropical polynomial p of n variables and individual degree d has a non-root in $[d]^{n}$
Can be extended to any $R=S=\operatorname{Supp}(p)$. Open in the classical setting!

Example, $d=1$

$f=1 \oplus 0 \odot x \oplus 0 \odot y=\max (1, x, y)$.
Roots:

There is a non-root it the set $\{0,1\} \times\{0,1\}$

Example, $d=1$
$f=1 \oplus 0 \odot x \oplus 0 \odot y=\max (1, x, y)$.
Roots:

There is a non-root it the set $\{0,1\} \times\{0,1\}$

Combinatorial Nulstellensatz

Theorem (Classical Combinatorial Nullstellensatz)
If p is of total degree at most nd and a monomial $x_{1}^{d} x_{2}^{d} \ldots x_{n}^{d}$ is in p, then p has a non-root in $[d]^{n}$

Thus it might be that $|\operatorname{Supp}(p)|>|R|$ and p still must have a non-root in R

Combinatorial Nulstellensatz

Theorem (Classical Combinatorial Nullstellensatz)
If p is of total degree at most nd and a monomial $x_{1}^{d} x_{2}^{d} \ldots x_{n}^{d}$ is in p, then p has a non-root in $[d]^{n}$

Thus it might be that $|\operatorname{Supp}(p)|>|R|$ and p still must have a non-root in R

Not the case for tropical polynomials!
Theorem (Tropical)
If $|S|>|R|$, then there is a tropical polynomial p with
$\operatorname{Supp}(p)=S$ and roots in all points of R

Combinatorial Nulstellensatz

Theorem (Classical Combinatorial Nullstellensatz)
If p is of total degree at most nd and a monomial $x_{1}^{d} x_{2}^{d} \ldots x_{n}^{d}$ is in p, then p has a non-root in $[d]^{n}$

Thus it might be that $|\operatorname{Supp}(p)|>|R|$ and p still must have a non-root in R

Not the case for tropical polynomials!
Theorem (Tropical)
If $|S|>|R|$, then there is a tropical polynomial p with
$\operatorname{Supp}(p)=S$ and roots in all points of R
Proof strategy: Look at the polynomial with varying coefficients, analyze as a tropical linear system, use known results for tropical linear systems

Schwartz-Zippel Lemma

Question 2 Given finite sets $R \subseteq \mathbb{R}^{n}$ and $S \subseteq \mathbb{Z}_{+}^{n}$, how many roots can a tropical polynomial p with $\operatorname{Supp}(p) \subseteq S$ have in the set R ?

Classical case:
Theorem (Classical Schwartz-Zippel Lemma)
Let $R \subseteq \mathbb{R}$ be of size k and p be a non-zero polynomial of degree d. Then p has roots in at most $d k^{n-1}$ points in R^{n}.

Tropical Schwartz-Zippel Lemma

Theorem

- Let $R \subseteq \mathbb{R}$ be of size k and p be a non-zero tropical polynomial of degree d. Then p has roots in at most

$$
k^{n}-(k-d)^{n} \approx n d k^{n-1}
$$

points in R^{n}

- Exactly the same statement is true for the polynomials with individual degree of each variable at most d
- The bound is optimal

For $d=1$ this is Isolation Lemma

Tropical Schwartz-Zippel Lemma

Theorem

- Let $R \subseteq \mathbb{R}$ be of size k and p be a non-zero tropical polynomial of degree d. Then p has roots in at most

$$
k^{n}-(k-d)^{n} \approx n d k^{n-1}
$$

points in R^{n}

- Exactly the same statement is true for the polynomials with individual degree of each variable at most d
- The bound is optimal

For $d=1$ this is Isolation Lemma
Proof Idea.
Use Tropical Combinatorial Nullstellensatz

Universal Testing Set

Question 3 What is the size of the minimal set of points $R \subseteq \mathbb{K}^{n}$ such that any non-trivial polynomial with at most k monomials has a non-root in one of the points of R ?

Classical case: $r=k$ (Grigoriev, Karpinski, Singer, Ben-Or, Tiwari, Kaltofen, Yagati)

Example, $n=1$

$f=1 \oplus 1 \odot x \oplus 0 \odot x^{\odot} 2=\max (1, x+1,2 x)$

$k+1$ monomials are needed for k roots, so $r=k$

Tropical Universal Testing Set, $\mathbb{K}=\mathbb{R}$

Question 3 What is the size of the minimal set of points $R \subseteq \mathbb{K}^{n}$ such that any non-trivial polynomial with at most k monomials has a non-root in one of the points of R ?

Tropical Universal Testing Set, $\mathbb{K}=\mathbb{R}$

Question 3 What is the size of the minimal set of points $R \subseteq \mathbb{K}^{n}$ such that any non-trivial polynomial with at most k monomials has a non-root in one of the points of R ?

It turns out that the answer is different for $\mathbb{K}=\mathbb{R}$ and $\mathbb{K}=\mathbb{Q}$

Tropical Universal Testing Set, $\mathbb{K}=\mathbb{R}$

Question 3 What is the size of the minimal set of points $R \subseteq \mathbb{K}^{n}$ such that any non-trivial polynomial with at most k monomials has a non-root in one of the points of R ?

It turns out that the answer is different for $\mathbb{K}=\mathbb{R}$ and $\mathbb{K}=\mathbb{Q}$
Theorem
For polynomials over \mathbb{R} the minimal size r of the universal testing set for tropical polynomials with at most k monomials is equal to k

Tropical Universal Testing Set, $\mathbb{K}=\mathbb{R}$

Question 3 What is the size of the minimal set of points $R \subseteq \mathbb{K}^{n}$ such that any non-trivial polynomial with at most k monomials has a non-root in one of the points of R ?

It turns out that the answer is different for $\mathbb{K}=\mathbb{R}$ and $\mathbb{K}=\mathbb{Q}$
Theorem
For polynomials over \mathbb{R} the minimal size r of the universal testing set for tropical polynomials with at most k monomials is equal to k

Proof Idea.

Universal set: pick a set R of points whose coordinates are linearly independent over \mathbb{Q}
Let p vanish on R. Consider a graph: vertices are monomials, edges connect monomials that both have maximums on one of the roots in R
Show that the graph can have no cycles

Tropical Universal Testing Set, $\mathbb{K}=\mathbb{Q}$

Question 3 What is the size r of the minimal set of points $R \subseteq \mathbb{K}^{n}$ such that any non-trivial polynomial with at most k monomials has a non-root in one of the points of R ?

Theorem

For the size of the minimal universal testing set over \mathbb{Q} the following inequalities hold:

$$
\frac{(k-1)(n+1)}{2}+1 \leq r \leq k(n+1)+1 .
$$

Proof Idea.

Upper bound: Count the dimension of semialgebraic set of sets of roots of tropical polynomials
Lower bound: Given set of points R construct polynomial with roots in all points of R inductively

Tropical Universal Testing Set, $\mathbb{K}=\mathbb{Q}$

Question 3 What is the size r of the minimal set of points $R \in \mathbb{K}^{n}$ such that any non-trivial polynomial with at most k monomials has a non-root in one of the points of R ?

Theorem
For $n=2$ we have

$$
r=2 k-1
$$

Proof Idea.
A universal set: vertices of a convex polygon

Conclusion

- Tropical Combinatorial Nullstellensatz

Completely different compared to classical case

Conclusion

- Tropical Combinatorial Nullstellensatz

Completely different compared to classical case

- Tropical Schwartz-Zippel Lemma

Similar to classical case
Connected to Isolation Lemma

Conclusion

- Tropical Combinatorial Nullstellensatz

Completely different compared to classical case

- Tropical Schwartz-Zippel Lemma Similar to classical case
Connected to Isolation Lemma
- Tropical Universal Testing Set

Completely different for \mathbb{R} and \mathbb{Q}
Gap between lower and upper bound for \mathbb{Q}

